# Hyperbolicity of the family $f_{c}(x)=c\left(x-\frac{x^{3}}{3}\right)$ 

Monireh Akbari ${ }^{a, *}$ and Maryam Rabii ${ }^{b}$<br>${ }^{a}$ Shahid Rajaee Teacher Training University, Tehran, Iran<br>${ }^{b}$ Alzahra University, Tehran, Iran<br>E-mail: akbari@srttu.edu<br>E-mail: mrabii@alzahra.ac.ir

Abstract. The aim of this paper is to present a proof of the hyperbolicity of the family $f_{c}(x)=c\left(x-\frac{x^{3}}{3}\right),|c|>3$, on an its invariant subset of $\mathbb{R}$.

Keywords: Hyperbolicity, Cantor set, Totally disconnected, Schwarzian derivative.

2000 Mathematics subject classification: 37E05, 37D05.

## Introduction

There is extensive literature on the behavior of the unimodal map $g_{\mu}(x)=$ $\mu x(1-x)$, see, e. g. [1], [2], [3] and [5]. An elementary treatment of $g_{\mu}$ for $\mu>4$ can be found, among others, in [4], where the existence of an invariant hyperbolic Cantor set is established. Following the methods of [4], we treat the family $f_{c}(x)=c\left(x-\frac{x^{3}}{3}\right)$ in the case $|c|>3$. When $0<|c| \leq 2$ the attracting fixed and periodic points of period 2 , when they exist, dominate the dynamical behavior of the orbits that do not tend to infinity. When $0<|c| \leq 3$ the orbits of the points in the interval $I_{c}=\left[-\sqrt{3\left(1+\frac{1}{|c|}\right)}, \sqrt{3\left(1+\frac{1}{|c|}\right)}\right]$ are bounded. If $|c|>3$, there are some points in the interval $I_{c}$ whose images leave this interval. The interval $I_{c}$ is divided into five subintervals, two open subintervals which leave $I_{c}$ after one iteration of $f_{c}$, and three closed subintervals which are

[^0]mapped monotonically onto $I_{c}$ by $f_{c}$. Continuing this process, we determine the invariant subset of $I_{c}$ under $f_{c}$. Let $\Lambda_{f_{c}}=\cap_{n=1}^{\infty} f_{c}^{-n}\left(I_{c}\right)$.

In this paper, we will show that $\Lambda_{f_{c}}$ is

- repelling hyperbolic,
- totally disconnected,
- a Cantor set.

Following [4], we show in the first section that $f_{c}(x)=c\left(x-\frac{x^{3}}{3}\right), c>3$, has a repelling hyperbolic set. In the second section we show the hyperbolicity of $f_{-c}, c>3$. It will follow from Lemma 1 and Theorem 1 that $\Lambda_{f_{c}},|c|>3$, is a Cantor set.

Lemma 1. If $|c|>3$, then $\Lambda_{f_{c}}$ is a closed perfect subset of $I_{c}$.
Proof. It is clear that $\Lambda_{f_{c}}=\cap_{n=1}^{\infty} f_{c}^{-n}\left(I_{c}\right)$ is a closed set, since $I_{n}=f_{c}^{-n}\left(I_{c}\right)$ is a closed set. Suppose $x \in \Lambda_{f_{c}}$, then $x \in I_{n}$ for every $n$, and there is an interval $I_{n_{k}} \subset I_{n}$ such that $x \in I_{n_{k}}$. So $x \in \cap_{n=1}^{\infty} I_{n_{k}}$. If $x$ is the only point of intersection, then there is a sequence of endpoints of $I_{n_{k}}$ 's, $\left\{a_{n_{k}}\right\}$, that converges to $x$ and $a_{n_{k}} \in \Lambda_{f_{c}}$, because these points are finally mapped to endpoints of $I_{c}$. If $\cap_{n=1}^{\infty} I_{n_{k}}$ contains more than one point, then it is an interval and $x$ is a limit point of this interval.

Definition 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a $C^{1}$ function. A set $\Gamma \subseteq \mathbb{R}$ is a repelling hyperbolic set if $\Gamma$ is a compact subset of $\mathbb{R}$ that is invariant under $f$, and there exists $N>0$ such that $\left|\left(f^{n}\right)^{\prime}(x)\right|>1$ for all $n \geq N$ and all $x \in \Gamma$

Lemma 2. [4] Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{1}$ function, $\Gamma$ is a compact subset of $\mathbb{R}$ and $f(\Gamma) \subseteq \Gamma$. Then the following statements are equivalent.
(1) There is an integer $N>0$ such that $\left|\left(f^{n}\right)^{\prime}(x)\right|>1$ for all $n \geq N$ and all $x \in \Gamma$.
(2) There is an integer $n_{0}>0$ such that $\left|\left(f^{n_{0}}\right)^{\prime}(x)\right|>1$ for all $x \in \Gamma$.
(3) For every $x \in \Gamma$, there is an integer $n_{x}>0$ such that $\left|\left(f^{n_{x}}\right)^{\prime}(x)\right|>1$.

In order to prove the hyperbolicity of $\Lambda_{f_{c}}$ we will show that statement 3 of Lemma 2 is satisfied. We will use the notion Schwarzian derivative and its properties.

Suppose $f$ is a $C^{3}$ function that has been defined in a neighborhood of $x$ and $f^{\prime}(x) \neq 0$, then Schwarzian derivative of $f$ at $x$ is

$$
S f(x)=\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

It is well known that $S(f \circ g)<0$, if $S(f)<0$ and $S(g)<0$ and also if $I=[a, b]$ and $S f(x)<0$ for all $x \in(a, b)$, then $f^{\prime}$ has neither a positive local minimum on $I$ nor a negative local maximum on $I$, [2]. The following lemma holds as well:

Lemma 3. [4] Let $I=[a, b]$ and suppose $f$ is $C^{3}$ on $I$. If $S f<0$ on $(a, b)$, then $\left|f^{\prime}(x)\right|>\min \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}$ for all $x \in(a, b)$.

It is easily seen that:
Lemma 4. Let $f_{c}(x)=c\left(x-x^{3} / 3\right)$, then $S f_{c}(x)<0$ for all $x \in \mathbb{R}-\{-1,1\}$.

## 1. Hyperbolicity of $\Lambda_{f_{c}}, c>3$

Now suppose $c>3$ and $z_{0}=\sqrt{3(1+1 / c)}$. There are three intervals that are mapped homeomorphically onto $\left[-z_{0}, z_{0}\right]$. If

$$
q_{1}=(\sqrt{3(1+1 / c)}+\sqrt{3(1-3 / c)}) / 2, q_{0}=(\sqrt{3(1+1 / c)}-\sqrt{3(1-3 / c)}) / 2
$$

then these three intervals are

$$
\left[-z_{0},-q_{1}\right],\left[-q_{0}, q_{0}\right],\left[q_{1}, z_{0}\right]
$$

Fixed points of $f_{c}$ are $p_{1}=\sqrt{3(1-1 / c)},-p_{1}$ and 0 . Let $p_{0}=(-\sqrt{3(1-1 / c)}+$ $\sqrt{3(1+3 / c)}) / 2$, then $f_{c}\left(p_{0}\right)=f_{c}\left(p_{1}\right)=p_{1}$ and $f_{c}\left(-p_{0}\right)=f_{c}\left(-p_{1}\right)=-p_{1}$ (Figure 1). Also, let $J=\left(p_{0}, q_{0}\right) \cup\left(q_{1}, p_{1}\right)$ and $-J=\left(-q_{0},-p_{0}\right) \cup\left(-p_{1},-q_{1}\right)$, then we have the following lemma.

Lemma 5. Suppose $f_{c}(x)=c\left(x-x^{3} / 3\right), c>3, x \in J \cup-J$ and $x$ is not an eventually periodic point, then there is an integer $n \geq 2$ such that $f_{c}^{n}(x) \in$ $\left(-p_{1}, p_{1}\right)$.

Proof. We know $f_{c}\left(p_{0}, q_{0}\right)=f_{c}\left(q_{1}, p_{1}\right)=\left(p_{1}, z_{0}\right)$ and $f_{c}\left(p_{1}, z_{0}\right)=\left(-z_{0}, p_{1}\right)$. Suppose $x \in J$, then $y=f_{c}^{2}(x) \in\left(-z_{0}, p_{1}\right)$. Let the orbit of $y$ never leaves $\left(p_{1}, z_{0}\right) \cup\left(-z_{0},-p_{1}\right)$. Now if $y \in\left(p_{1}, z_{0}\right)$, then $f_{c}^{2}(y) \in\left(p_{1}, z_{0}\right)$, so $f_{c}^{2}(y)=y$ or $\left\{f_{c}^{2 n}(y)\right\}$ is a monotonic sequence that must converge to a periodic point of period 2 , but it is easily seen that all the periodic points of period 2 are repelling and this is impossible.


Figure 1. $f_{c}(x)=c\left(x-\frac{x^{3}}{3}\right) ; c=\frac{7}{2}$

Lemma 6. If $c>3$, then $p_{1}-q_{1}<q_{0}-p_{0}<z_{0}-p_{1}$
Proof. Straightforward computation shows $p_{1}-q_{1}<q_{0}-p_{0}$. In order to prove $\left(q_{0}-p_{0}\right)^{2}<\left(z_{0}-p_{1}\right)^{2}$ we should show $3 c-5<\sqrt{(c+1)(c-3)}+$ $\sqrt{(c+1)(c+3)}+\sqrt{c^{2}-9}$. That is correct because

$$
\begin{aligned}
& c-3<\sqrt{(c+1)(c-3)} \\
& c+1<\sqrt{(c+1)(c+3)} \\
& c-3<\sqrt{c^{2}-9} .
\end{aligned}
$$

Theorem 1. Let $c>3$ and $x \in \Lambda_{f_{c}}$, then there is an integer $n$ such that $\left|\left(f_{c}^{n}\right)^{\prime}(x)\right|>1$.

Proof. If $x \in\left[p_{1}, z_{0}\right]$ then $\left|f_{c}^{\prime}(x)\right|>\left|f_{c}^{\prime}\left(p_{1}\right)\right|=|-2 c+3|>1$ and if $x$ is an eventual fixed point, there is an integer $n$ such that $\left|\left(f_{c}^{n}\right)^{\prime}(x)\right|>1$. If $x=q_{1}$, since $f_{c}\left(q_{1}\right)=z_{0}$ and $z_{0}$ is a repelling periodic point then there exist $n$ such that $\left|\left(f_{c}^{n}\right)^{\prime}\left(q_{0}\right)\right|>1$.

Now suppose $x \in \Lambda_{f_{c}}$ and $x \in\left(q_{1}, p_{1}\right)$. According to Lemma 5 , there exists $n \geq 2$ such that $f_{c}^{n}(x) \in\left(-p_{1}, p_{1}\right)$. Since $x \in \Lambda_{f_{c}}$, there is $n$ such that $x \in I_{n}$ and there is an interval $I_{n_{j}} \subset I_{n}$ such that $x \in I_{n_{j}}$ and $f_{c}^{n} \operatorname{maps} I_{n_{j}}$ monotonically onto $\left[-z_{0}, z_{0}\right.$ ].

First we suppose $I_{n_{j}} \subseteq\left[q_{1}, p_{1}\right)$. We divide $I_{n_{j}}$ to three subintervals, $I_{n_{j}}=$ $L_{n_{j}} \cup K_{n_{j}} \cup R_{n_{j}}$, such that

$$
f_{c}^{n}\left(L_{n_{j}}\right)=\left[-z_{0},-p_{1}\right], f_{c}^{n}\left(K_{n_{j}}\right)=\left(-p_{1}, p_{1}\right), f_{c}^{n}\left(R_{n_{j}}\right)=\left[p_{1}, z_{0}\right]
$$

According Lemma 6, $\left|f_{c}^{n}\left(L_{n_{j}}\right)\right|>\left|L_{n_{j}}\right|$ and $\left|f_{c}^{n}\left(R_{n_{j}}\right)\right|>\left|R_{n_{j}}\right|$. By using Mean Value Theorem, there exists $y \in L_{n_{j}}$ such that $\left|\left(f_{c}^{n}\right)^{\prime}(y)\right|>1$ and there is $z \in R_{n_{j}}$ such that $\left|\left(f_{c}^{n}\right)^{\prime}(z)\right|>1$. Since $x$ is between $y$ and $z$ and since $S f_{c}\left(I_{n_{j}}\right)<0$, then according to Lemma $3,\left|\left(f_{c}^{n}\right)^{\prime}(x)\right|>1$.

Now suppose $I_{n_{j}} \nsubseteq\left[q_{1}, p_{1}\right)$, so $x<p_{1}, x \in I_{n_{j}}$ and $p_{1} \in I_{n_{j}}$. As before we define $R_{n_{j}}, K_{n_{j}}$ and $L_{n_{j}}$. Again, $x \in K_{n_{j}}$ and $L_{n_{j}}$ or $R_{n_{j}}$ is a subset of $\left[q_{1}, p_{1}\right)$. Suppose $L_{n_{j}}$ has this property. As before there exists $y$ with this property that $\left|\left(f_{c}^{n}\right)^{\prime}(y)\right|>1$ and $p_{1}$ is a repelling fixed point, therefore $\left|\left(f_{c}^{n}\right)^{\prime}\left(p_{1}\right)\right|>1 . x$ is between $y$ and $p_{1}$ and we conclude that $\left|\left(f_{c}^{n}\right)^{\prime}(x)\right|>1$.

The other cases are proved similarly.

## 2. Hyperbolicity of $\Lambda_{f_{c}},|c|>3$

In this section we describe how the case $c<-3$ can be deduced from the case $c>3$.

Lemma 7. $\Lambda_{f_{c}}=\Lambda_{f_{c}^{k}}$ for all $k \in \mathbb{N}$.
Proof. It is clear that $\Lambda_{f_{c}} \subseteq \Lambda_{f_{c}^{k}}$. Let $x \in \Lambda_{f_{c}^{k}}$, but $x \notin \Lambda_{f_{c}}$. Then $\lim _{n \rightarrow \infty}\left|f_{c}^{n}(x)\right|=$ $\infty$, especially $\lim _{n \rightarrow \infty}\left|f_{c}^{k n}(x)\right|=\infty$ whereas $\left\{\left|f_{c}^{k n}(x)\right|\right\}_{n \geq 0}$ is bounded.

Corollary 1. For any c, $\Lambda_{f_{c}}=\Lambda_{f_{c}^{2}}=\Lambda_{f_{-c}^{2}}=\Lambda_{f-c}$.

Lemma 8. $\left(f_{c}^{n}\right)^{\prime}(-x)=\left(f_{c}^{n}\right)^{\prime}(x)$ and $\left(f_{-c}^{n}\right)^{\prime}(x)=(-1)^{n}\left(f_{c}^{n}\right)^{\prime}(x)$.
Proof. We know $f_{-c}^{\prime}(x)=-f_{c}^{\prime}(x), f_{c}^{\prime}(-x)=f_{c}^{\prime}(x), f_{c}(-x)=-f_{c}(x)$. Now lemma is proved by induction.

Now let $c>3$, the following lemma shows that $f_{-c}$ on $\Lambda_{f_{-c}}$ is repeling hyperbolic.

Lemma 9. For any $x \in \Lambda_{f_{-c}}$, there exists $n_{x} \in \mathbb{N}$ such that $\left|\left(f_{-c}^{n_{x}}\right)^{\prime}(x)\right|>1$.
Proof. Let $x \in \Lambda_{f-c}=\Lambda_{f_{c}}$. Therefore, by Theorem 1 there exists $n_{x} \in \mathbb{N}$ such that $\left|\left(f_{c}^{n_{x}}\right)^{\prime}(x)\right|>1$. By Lemma 8, $\left|\left(f_{-c}^{n_{x}}\right)^{\prime}(x)\right|=\left|(-1)^{n}\left(f_{c}^{n_{x}}\right)^{\prime}(x)\right|=$ $\left|\left(f_{c}^{n_{x}}\right)^{\prime}(x)\right|>1$.

Theorem 2. If $|c|>3, \Lambda_{f_{c}}$ is totally disconnected.

Proof. Suppose $[x, y] \subseteq \Lambda_{f_{c}}$. According to Theorem 1 and Lemma 2 there is $N>0$ such that $\left|\left(f_{c}^{n}\right)^{\prime}(z)\right|>1$ for all $z \in \Lambda_{f_{c}}$ and $n \geq N$. Let $\left|\left(f_{c}^{N}\right)^{\prime}(z)\right| \geq$ $\lambda>1$. By Mean Value Theorem we have $\left|f_{c}^{k N}(x)-f_{c}^{k N}(y)\right| \geq \lambda^{k}|x-y|$ and $f_{c}^{k N}(x), f_{c}^{k N}(y) \in \Lambda_{f_{c}}$, for $k \in \mathbb{N}$ and this is a contradiction.

Acknowledgements. The authors would like to thank Professor S. Shahshahani for helpful conversations and suggestions.

## References

[1] Alligood, K. T. and T. D. Sauer and J. A. Yorke, Chaos, an introduction to dynamical systems, Springer-Verlag, 2000.
[2] Devaney, R., An introduction to chaotic dynamical systems, 2nd Ed., Addison-Wesley, 1989.
[3] Elaydi, S. N., Discrete chaos with applications in science and engineering, 2nd Ed., Chapman and Hall/CRC, 2007.
[4] Kraft, R. L., Cantor sets and hyperbolicity for the logistic maps, The American Mathematical Monthly, 106(5), (1999), 400-408.
[5] de Melo, W. and S. van Strien, One-dimensional dynamics, Springer-Verlag, 1993.


[^0]:    * Corresponding Author

