Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 1 (2011), pp 53-58 DOI: 10.7508/ijmsi.2011.01.005

Hyperbolicity of the family $f_c(x) = c(x - \frac{x^3}{3})$

Monireh Akbari a,* and Maryam Rabii b

^aShahid Rajaee Teacher Training University, Tehran, Iran ^bAlzahra University, Tehran, Iran

> E-mail: akbari@srttu.edu E-mail: mrabii@alzahra.ac.ir

ABSTRACT. The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x) = c(x - \frac{x^3}{3}), |c| > 3$, on an its invariant subset of \mathbb{R} .

Keywords: Hyperbolicity, Cantor set, Totally disconnected, Schwarzian derivative.

2000 Mathematics subject classification: 37E05, 37D05.

INTRODUCTION

There is extensive literature on the behavior of the unimodal map $g_{\mu}(x) = \mu x(1-x)$, see, e. g. [1], [2], [3] and [5]. An elementary treatment of g_{μ} for $\mu > 4$ can be found, among others, in [4], where the existence of an invariant hyperbolic Cantor set is established. Following the methods of [4], we treat the family $f_c(x) = c(x - \frac{x^3}{3})$ in the case |c| > 3. When $0 < |c| \le 2$ the attracting fixed and periodic points of period 2, when they exist, dominate the dynamical behavior of the orbits that do not tend to infinity. When $0 < |c| \le 3$ the orbits of the points in the interval $I_c = [-\sqrt{3(1 + \frac{1}{|c|})}, \sqrt{3(1 + \frac{1}{|c|})}]$ are bounded. If |c| > 3, there are some points in the interval I_c whose images leave this interval. The interval I_c is divided into five subintervals, two open subintervals which leave I_c after one iteration of f_c , and three closed subintervals which are

^{*}Corresponding Author

Received 15 May 2010; Accepted 10 September 2010

 $[\]textcircled{C}2011$ Academic Center for Education, Culture and Research TMU

⁵³

mapped monotonically onto I_c by f_c . Continuing this process, we determine the invariant subset of I_c under f_c . Let $\Lambda_{f_c} = \bigcap_{n=1}^{\infty} f_c^{-n}(I_c)$.

In this paper, we will show that Λ_{f_c} is

- repelling hyperbolic,
- totally disconnected,
- a Cantor set.

Following [4], we show in the first section that $f_c(x) = c(x - \frac{x^3}{3})$, c > 3, has a repelling hyperbolic set. In the second section we show the hyperbolicity of f_{-c} , c > 3. It will follow from Lemma 1 and Theorem 1 that Λ_{f_c} , |c| > 3, is a Cantor set.

Lemma 1. If |c| > 3, then Λ_{f_c} is a closed perfect subset of I_c .

Proof. It is clear that $\Lambda_{f_c} = \bigcap_{n=1}^{\infty} f_c^{-n}(I_c)$ is a closed set, since $I_n = f_c^{-n}(I_c)$ is a closed set. Suppose $x \in \Lambda_{f_c}$, then $x \in I_n$ for every n, and there is an interval $I_{n_k} \subset I_n$ such that $x \in I_{n_k}$. So $x \in \bigcap_{n=1}^{\infty} I_{n_k}$. If x is the only point of intersection, then there is a sequence of endpoints of I_{n_k} 's, $\{a_{n_k}\}$, that converges to x and $a_{n_k} \in \Lambda_{f_c}$, because these points are finally mapped to endpoints of I_c . If $\bigcap_{n=1}^{\infty} I_{n_k}$ contains more than one point, then it is an interval and x is a limit point of this interval.

Definition 1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a C^1 function. A set $\Gamma \subseteq \mathbb{R}$ is a repelling hyperbolic set if Γ is a compact subset of \mathbb{R} that is invariant under f, and there exists N > 0 such that $|(f^n)'(x)| > 1$ for all $n \ge N$ and all $x \in \Gamma$

Lemma 2. [4] Suppose $f : \mathbb{R} \to \mathbb{R}$ is a C^1 function, Γ is a compact subset of \mathbb{R} and $f(\Gamma) \subseteq \Gamma$. Then the following statements are equivalent.

- (1) There is an integer N > 0 such that $|(f^n)'(x)| > 1$ for all $n \ge N$ and all $x \in \Gamma$.
- (2) There is an integer $n_0 > 0$ such that $|(f^{n_0})'(x)| > 1$ for all $x \in \Gamma$.
- (3) For every $x \in \Gamma$, there is an integer $n_x > 0$ such that $|(f^{n_x})'(x)| > 1$.

In order to prove the hyperbolicity of Λ_{f_c} we will show that statement 3 of Lemma 2 is satisfied. We will use the notion Schwarzian derivative and its properties.

Suppose f is a C^3 function that has been defined in a neighborhood of x and $f'(x) \neq 0$, then Schwarzian derivative of f at x is

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2}(\frac{f''(x)}{f'(x)})^2$$

It is well known that $S(f \circ g) < 0$, if S(f) < 0 and S(g) < 0 and also if I = [a, b]and Sf(x) < 0 for all $x \in (a, b)$, then f' has neither a positive local minimum on I nor a negative local maximum on I, [2]. The following lemma holds as well:

Lemma 3. [4] Let I = [a, b] and suppose f is C^3 on I. If Sf < 0 on (a, b), then $|f'(x)| > \min\{|f'(a)|, |f'(b)|\}$ for all $x \in (a, b)$.

It is easily seen that:

Lemma 4. Let $f_c(x) = c(x - x^3/3)$, then $Sf_c(x) < 0$ for all $x \in \mathbb{R} - \{-1, 1\}$.

1. Hyperbolicity of $\Lambda_{f_c}, \ c > 3$

Now suppose c > 3 and $z_0 = \sqrt{3(1+1/c)}$. There are three intervals that are mapped homeomorphically onto $[-z_0, z_0]$. If

 $q_1 = \left(\sqrt{3(1+1/c)} + \sqrt{3(1-3/c)}\right)/2, \ q_0 = \left(\sqrt{3(1+1/c)} - \sqrt{3(1-3/c)}\right)/2$

then these three intervals are

 $[-z_0,-q_1], [-q_0,q_0], [q_1,z_0]$

Fixed points of f_c are $p_1 = \sqrt{3(1-1/c)}$, $-p_1$ and 0. Let $p_0 = \left(-\sqrt{3(1-1/c)} + \sqrt{3(1+3/c)}\right)/2$, then $f_c(p_0) = f_c(p_1) = p_1$ and $f_c(-p_0) = f_c(-p_1) = -p_1$ (Figure 1). Also, let $J = (p_0, q_0) \cup (q_1, p_1)$ and $-J = (-q_0, -p_0) \cup (-p_1, -q_1)$, then we have the following lemma.

Lemma 5. Suppose $f_c(x) = c(x - x^3/3)$, c > 3, $x \in J \cup -J$ and x is not an eventually periodic point, then there is an integer $n \ge 2$ such that $f_c^n(x) \in (-p_1, p_1)$.

Proof. We know $f_c(p_0, q_0) = f_c(q_1, p_1) = (p_1, z_0)$ and $f_c(p_1, z_0) = (-z_0, p_1)$. Suppose $x \in J$, then $y = f_c^2(x) \in (-z_0, p_1)$. Let the orbit of y never leaves $(p_1, z_0) \cup (-z_0, -p_1)$. Now if $y \in (p_1, z_0)$, then $f_c^2(y) \in (p_1, z_0)$, so $f_c^2(y) = y$ or $\{f_c^{2n}(y)\}$ is a monotonic sequence that must converge to a periodic point of period 2, but it is easily seen that all the periodic points of period 2 are repelling and this is impossible.

FIGURE 1. $f_c(x) = c(x - \frac{x^3}{3}); \ c = \frac{7}{2}$

Lemma 6. If c > 3, then $p_1 - q_1 < q_0 - p_0 < z_0 - p_1$

Proof. Straightforward computation shows $p_1 - q_1 < q_0 - p_0$. In order to prove $(q_0 - p_0)^2 < (z_0 - p_1)^2$ we should show $3c - 5 < \sqrt{(c+1)(c-3)} + \sqrt{(c+1)(c+3)} + \sqrt{c^2 - 9}$. That is correct because $c - 3 < \sqrt{(c+1)(c-3)}$ $c + 1 < \sqrt{(c+1)(c+3)}$ $c - 3 < \sqrt{c^2 - 9}$. □

Theorem 1. Let c > 3 and $x \in \Lambda_{f_c}$, then there is an integer n such that $|(f_c^n)'(x)| > 1$.

Proof. If $x \in [p_1, z_0]$ then $|f'_c(x)| > |f'_c(p_1)| = |-2c+3| > 1$ and if x is an eventual fixed point, there is an integer n such that $|(f^n_c)'(x)| > 1$. If $x = q_1$, since $f_c(q_1) = z_0$ and z_0 is a repelling periodic point then there exist n such that $|(f^n_c)'(q_0)| > 1$.

Now suppose $x \in \Lambda_{f_c}$ and $x \in (q_1, p_1)$. According to Lemma 5, there exists $n \geq 2$ such that $f_c^n(x) \in (-p_1, p_1)$. Since $x \in \Lambda_{f_c}$, there is n such that $x \in I_n$ and there is an interval $I_{n_j} \subset I_n$ such that $x \in I_{n_j}$ and f_c^n maps I_{n_j} monotonically onto $[-z_0, z_0]$.

First we suppose $I_{n_j} \subseteq [q_1, p_1)$. We divide I_{n_j} to three subintervals, $I_{n_j} = L_{n_j} \cup K_{n_j} \cup R_{n_j}$, such that

$$f_c^n(L_{n_j}) = [-z_0, -p_1], \ f_c^n(K_{n_j}) = (-p_1, p_1), \ f_c^n(R_{n_j}) = [p_1, z_0]$$

According Lemma 6, $|f_c^n(L_{n_j})| > |L_{n_j}|$ and $|f_c^n(R_{n_j})| > |R_{n_j}|$. By using Mean Value Theorem, there exists $y \in L_{n_j}$ such that $|(f_c^n)'(y)| > 1$ and there is $z \in R_{n_j}$ such that $|(f_c^n)'(z)| > 1$. Since x is between y and z and since $Sf_c(I_{n_j}) < 0$, then according to Lemma 3, $|(f_c^n)'(x)| > 1$.

Now suppose $I_{n_j} \not\subseteq [q_1, p_1)$, so $x < p_1, x \in I_{n_j}$ and $p_1 \in I_{n_j}$. As before we define R_{n_j} , K_{n_j} and L_{n_j} . Again, $x \in K_{n_j}$ and L_{n_j} or R_{n_j} is a subset of $[q_1, p_1)$. Suppose L_{n_j} has this property. As before there exists y with this property that $|(f_c^n)'(y)| > 1$ and p_1 is a repelling fixed point, therefore $|(f_c^n)'(p_1)| > 1$. x is between y and p_1 and we conclude that $|(f_c^n)'(x)| > 1$.

The other cases are proved similarly.

2. Hyperbolicity of Λ_{f_c} , |c| > 3

In this section we describe how the case c < -3 can be deduced from the case c > 3.

Lemma 7. $\Lambda_{f_c} = \Lambda_{f_c^k}$ for all $k \in \mathbb{N}$.

Proof. It is clear that $\Lambda_{f_c} \subseteq \Lambda_{f_c^k}$. Let $x \in \Lambda_{f_c^k}$, but $x \notin \Lambda_{f_c}$. Then $\lim_{n \to \infty} |f_c^n(x)| = \infty$, especially $\lim_{n \to \infty} |f_c^{kn}(x)| = \infty$ whereas $\{|f_c^{kn}(x)|\}_{n \ge 0}$ is bounded. \square

Corollary 1. For any c, $\Lambda_{f_c} = \Lambda_{f_c^2} = \Lambda_{f_{-c}^2} = \Lambda_{f_{-c}}$.

Lemma 8. $(f_c^n)'(-x) = (f_c^n)'(x)$ and $(f_{-c}^n)'(x) = (-1)^n (f_c^n)'(x)$.

Proof. We know $f'_{-c}(x) = -f'_{c}(x)$, $f'_{c}(-x) = f'_{c}(x)$, $f_{c}(-x) = -f_{c}(x)$. Now lemma is proved by induction.

Now let c > 3, the following lemma shows that f_{-c} on $\Lambda_{f_{-c}}$ is repelling hyperbolic.

Lemma 9. For any $x \in \Lambda_{f_{-c}}$, there exists $n_x \in \mathbb{N}$ such that $|(f_{-c}^{n_x})'(x)| > 1$.

Proof. Let $x \in \Lambda_{f_{-c}} = \Lambda_{f_c}$. Therefore, by Theorem 1 there exists $n_x \in \mathbb{N}$ such that $|(f_c^{n_x})'(x)| > 1$. By Lemma 8, $|(f_{-c}^{n_x})'(x)| = |(-1)^n (f_c^{n_x})'(x)| = |(f_c^{n_x})'(x)| > 1$.

Theorem 2. If |c| > 3, Λ_{f_c} is totally disconnected.

Proof. Suppose $[x, y] \subseteq \Lambda_{f_c}$. According to Theorem 1 and Lemma 2 there is N > 0 such that $|(f_c^n)'(z)| > 1$ for all $z \in \Lambda_{f_c}$ and $n \ge N$. Let $|(f_c^N)'(z)| \ge \lambda > 1$. By Mean Value Theorem we have $|f_c^{kN}(x) - f_c^{kN}(y)| \ge \lambda^k |x - y|$ and $f_c^{kN}(x), f_c^{kN}(y) \in \Lambda_{f_c}$, for $k \in \mathbb{N}$ and this is a contradiction. \Box

Acknowledgements. The authors would like to thank Professor S. Shahshahani for helpful conversations and suggestions.

References

- Alligood, K. T. and T. D. Sauer and J. A. Yorke, Chaos, an introduction to dynamical systems, Springer-Verlag, 2000.
- [2] Devaney, R., An introduction to chaotic dynamical systems, 2nd Ed., Addison-Wesley, 1989.
- [3] Elaydi, S. N., Discrete chaos with applications in science and engineering, 2nd Ed., Chapman and Hall/CRC, 2007.
- [4] Kraft, R. L., Cantor sets and hyperbolicity for the logistic maps, *The American Mathematical Monthly*, **106**(5), (1999), 400-408.
- [5] de Melo, W. and S. van Strien, One-dimensional dynamics, Springer-Verlag, 1993.